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Elastic wave characteristics of the heat conduction in low-temperature thin wires can be studied via a wave
scattering formalism. A reaction matrix formulation of heat conductance modeled by elastic wave scattering is
advocated. This formulation allows us to treat thin wires with arbitrary surface disorder. It is found that the
correlation in the surface disorder may significantly affect the temperature dependence of the heat conductance.
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I. INTRODUCTION

In a thin wire where the electron or phonon wavelength is
in the same order of its width, a continuous description of
transport is no longer valid. Instead, a quantized unit of elec-
tric charge e or a characteristic scale of heat energy kBT �kB
is Boltzmann constant and T is the temperature� is needed to
understand the transport properties. When such a wire is un-
der an external field, e.g., a voltage difference in the electron
case or a temperature difference in the phonon case, system-
independent features such as the universal electric conduc-
tance quanta Ge=2e2 /� �� is the Planck constant� and the
universal heat conductance G=4�2kb

2T /3� quanta will
emerge.1 With the universal heat conductance quanta suc-
cessfully demonstrated recently,2 there have been great inter-
ests in the wave nature of heat transport at the nanoscale. For
example, recent experiments showed that the thermoelectric
properties of silicon nanowires are much better than that in
bulk silicon.3

Besides a nanoscale geometry, one needs low tempera-
tures �e.g., T�1 K� to observe a phase-coherent transport
and hence the wave nature of phonon transport.2,4,5 At low
temperatures, only acoustic phonon modes are populated
with their characteristic wavelength much longer than typical
atom-atom distances. As such, an elastic wave approach be-
comes appealing for a quasiclassical description of heat
transport. Indeed, elastic wave propagation in thin wires has
been analyzed in several studies with fruitful results.6–10

However, in these earlier publications only very simple ge-
ometries of a thin wire were considered, leaving the case of
a thin wire with surface disorder unexplored. This motivates
us to develop a framework that can handle elastic wave scat-
tering for arbitrary wire geometries. Specifically, we apply a
reaction matrix formulation, previously thoroughly devel-
oped for electron transport in nanoscale waveguides,11 to the
case of heat transport. We believe that this is the first time
that a reaction matrix formulation is applied to the context of
elastic wave scattering as well as heat conductance. In so
doing we use the so-called thin-plate approximation, which
means that one of the dimensions is decoupled from the
other two. This thin-plate approximation is widely used in
analyzing transport behaviors.12

Our formalism here for treating elastic wave transport can
handle arbitrary surface geometry or arbitrary surface disor-

der. This feature can be very useful because, depending on
the process of growth, there are often different types of sur-
face disorder introduced to nanowires.13 Preliminary studies
on the effect of surface disorder on nanowire heat conduction
show the existence of universal features in the presence of
disorder.14–16 Nevertheless, it is still an important problem to
understand in detail how surface disorder affects the actual
temperature dependence of heat conduction. Furthermore, as
learned from our previous work on electron transport in
rough waveguides, conductance properties of a nanoscale
rough waveguide can depend strongly on the involved en-
ergy scale and the long-range correlation of the surface dis-
order. We hence expect, similar to early studies of heat trans-
port in one-dimensional systems with partially random
defects or partially random coupling constants,17–19 that
long-range correlation in the surface disorder of thin wires
may have important implications for heat transport proper-
ties. In addition to presenting details of a reaction matrix
formulation of elastic wave scattering in two-dimensional
geometries, we also discuss several specific results. For ex-
ample, it is found that the throughput can be indeed modified
by assuming different kinds of correlations in the surface
disorder of a wire. In the one-mode regime the curve of
transmission versus phonon frequency may develop a clear
dip, thus considerably affecting the temperature dependence
of the heat conduction.

This work is organized as follows. In Sec. II we present
our elastic wave scattering model for heat transfer in long
thin wires. In Sec. III, we first present how specific surface
roughness can be generated, and then show the details of
how the throughput of out-of-plane elastic waves can be cal-
culated using a reaction matrix formulation. Representative
numerical results are presented and discussed. Section IV
concludes this work.

II. HEAT TRANSPORT MODELED AS A PROBLEM
OF TWO-DIMENSIONAL ELASTIC WAVE-SCATTERING

Heat transport in a solid is a result of unbalanced phonon
population. There are mainly two different perspectives in
understanding the heat current in nanomaterials.20 One is
based on the Kubo formalism, where phonon current is un-
derstood as a response to an external temperature field, with
the proportionality coefficient expressed as a heat conductiv-
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ity tensor. Similar to the electron transport case, the conduc-
tivity tensor is related to the current-current correlation func-
tion. Because the current-current correlation function should
be calculated for different phonons and because the phonon
number can change �umklapp process�, the Kubo formalism
leads to nonlinear equations that are difficult to solve in prac-
tice. The other perspective is due to Landauer, where the
current can be determined at the surfaces of the sample by
applying the correct boundary conditions. In particular, the
known solution for outside a sample can be matched at the
boundary using a scattering formalism. In this latter frame-
work, from the right bath with temperature TR to the left bath
with temperature TL, the heat energy flux J is given by

J =
1

2�
�
�
�

0

�

dw�w��R − �L�G��w� , �1�

where w is the phonon frequency, G� is the throughput of the
mode �. Here �R,L is the phonon distribution given by
�i�w�=1 / �exp��w /kBTi�−1�, where Ti are the temperatures,
with indices i=R ,L. Heat conductance is defined by energy
flux per temperature difference, i.e.,

� = J/	T � �J/�T , �2�

where for small temperature difference �TR−TL�, � is ap-
proximated by the temperature derivative of the energy flux.
After substituting �i�w� into Eq. �1� we have,

� =
�2

kBT2�
�

1

2�
�

0

�

dwG��w�
w2 exp��w/kBT�

�exp��w/kBT� − 1�2 , �3�

where we have defined the average temperature
T	�TL+TR� /2. In a perfect wire throughput is unity for each
open channel, then � in such a perfect case is given by

� =
kB

2T�2

3�
N , �4�

where N is the total number of open modes. As seen from
Eq. �3�, the throughput G��w� is the main quantity that de-
termines the temperature dependence of � in Landauer’s for-
malism. In the language of a scattering problem, G��w� is
determined by the absolute value squared of certain scatter-
ing amplitudes.

To calculate the throughput of elastic waves in a thin wire,
we use a thin-plate approximation to treat full elastic wave
equations. A schematic plot of a two-dimensional rough
waveguide modeling a nanowire with surface disorder is
shown in Fig. 1�b�. Because at low-temperatures contribution
from any optical modes is exponentially small,1 we use an
elastic theory to describe elastic wave scattering in a rela-
tively long wire. As we show in Fig. 1�b� as an example, we
intend to solve a scattering problem in a wire with the width-
length ratio set to be 1:100. We scale all the lengths by the
wire width, which is taken to be unity.

The elastic wave equation for our model system is given
by

�2u

�t2 = ct
2�2u + �cl

2 − ct
2� � �� · u� , �5�

where u is the displacement vector, cl is the longitudinal
phonon velocity, and ct is the transverse phonon velocity.21

For convenience we also scale the velocities by ct. That is, in
our calculation ct=1. In the thin-plate approximation, the
gradient in the z direction is assumed to be zero, thus sim-
plifying Eq. �5�. Such an approximation decouples the in-
plane acoustic modes from the out-of-plane acoustic modes.
Assuming that the in-plane and out-of-plane modes behave
in a similar fashion, we confine ourselves to the out-of-plane
modes only �see Fig. 1�a��. Technically speaking, implement-
ing the reaction matrix formulation for out-of-plane modes is
also simpler than for in-plane modes. The wave equation for
out-of-plane modes becomes

1

ct
2

�2uz

�t2 =
�2uz

�x2 +
�2uz

�y2 , �6�

where uz�x� is the displacement in the z direction. The
boundary condition for this wave equation will be specified
below.

The next step is to calculate the scattering of the elastic
waves in a two-dimensional geometry as shown in Fig. 1�b�.
We will employ a reaction matrix formulation for this scat-
tering problem. The basic idea of a reaction matrix approach
is as follows. First, the system is divided into the lead region
and the scattering region. Second, the known solution in the
lead region is matched at the boundary with the found solu-
tion in the scattering region. This matching is implemented
by using a basis set satisfying the appropriate boundary con-
dition. In the following section we will show how the reac-
tion matrix can be constructed based on appropriate basis
states.

III. SCATTERING THROUGHPUT IN A THIN WIRE
WITH SURFACE DISORDER

As learned from electron scattering in a rough
waveguide,22 it can be expected that disorder-induced local-
ization will also play an important role in elastic wave scat-
tering in a thin wire. Furthermore, if the localization length is

FIG. 1. �a� Schematic plot of an out-of-plane mode of an elastic
wave propagating in a thin plate. �b� Schematic plot of a two-
dimensional rough waveguide that models a thin wire with a rough
surface at y
0. An, Bn, Cn, and Dn denote scattering amplitudes.
See the text for details.
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smaller than the wire length, then the scattering throughput
G��w� is exponentially small; if the localization length is
much larger than the wire length, then G��w� should be close
to unity. Because in the low-temperature regime only a few
scattering channels contribute to heat transport, it is also im-
portant to realize that the localization length might depend
strongly on the phonon frequency.16 In particular, based on
the Born approximation, the electron localization length is
inversely proportional to the structure factor �defined below�
of the correlation function of the surface disorder evaluated
at twice of the scattering electron wavevector.22,23 By direct
analogy between the Schrödinger equation for electron mat-
ter waves and the elastic wave of matter, we can expect that
the correlation function of thin wire surface disorder can also
affect strongly the localization length of a scattering elastic
wave. Therefore, we are interested in �i� if it is possible to
manipulate the frequency dependence of the scattering
throughput of elastic waves, and �ii� to what extent different
surface disorders might affect the heat conductance.

For completeness we first discuss how to computationally
produce a random surface characterized by y=1+��x� �see
Fig. 1�b��. This can be done by dividing a long wire into
pieces, shifting each piece up or down randomly, and then
connecting each piece smoothly with a cubic spline
function.22,24 Randomness of the surface function � thus
generated can be described by an autocorrelation function

��x���x���=�2Cn�x−x��, where � is the variance in ��x�.
The Fourier transform of this auto correlation function is
defined as the structure factor, denoted ��k�. For disorder
close to a white-noise type or for disorder without long-range
correction �computationally, we can only divide the wire re-
gion into a finite number of pieces, e.g., 100 pieces, hence
the surface disorder we generate is at most close to a white-
noise type�, the structure factor trivially takes a constant
value over a broad range of k. To generate a more realistic
rough thin wire with “colored” or long-range surface disor-
der, we define another function �x�,

�x� =
sin��ar�x� − sin��al�x�

�ar�x
, �7�

where al and ar are two introduced parameters. Consider
then a function �̃�x� resulting from a convolution of ��x�
with �x�, i.e., �̃�x�=dx��x����x−x��. It can be easily
shown22 that due to this convolution, ��k� now becomes a
“square bump” function, with the bump edges located at al

and ar. That is, ��k� is zero for k�al or k
ar and is a
constant in between. This convolution method is used below
to produce several “bump” functions as an “engineered” sur-
face disorder structure factor, with different bump widths.
Certainly, one may also combine a number of different �x�
functions to generate a rather arbitrary structure factor ��k�.

A. Constructing the reaction matrix

The reaction matrix method is a well-known time-
independent scattering formalism. As such we need to con-
sider the stationary solutions to the wave equation in Eq. �6�.
Let us first substitute the ansatz exp�−iwt�uz into Eq. �6�,21

yielding

�2uz

�x2 +
�2uz

�y2 −
w2

ct
2 uz = 0, �8�

where w is the phonon frequency. The realistic boundary
condition for uz is given by21

�uz

�y
= 0. �9�

A stationary solution to Eq. �8� for a straight channel satis-
fying the above “zero-stress” boundary condition at y=0 and
y=1 can then be found, namely,

�nl = �An
eiknx

�kn

− Bn
e−iknx

�kn
�cos�n�y

d
�; �10�

�nr = �Cn
eiknx

�kn

− Dn
e−iknx

�kn
�cos�n�y

d
� , �11�

where An, Bn, Cn, and Dn are the scattering amplitudes. The
wavevector is given by kn=�w2− �n� /d�2, where
n=0,1 ,2 ,¯ Note that when kn takes imaginary values, the
solutions are called “evanescent modes.” As mentioned
above, in our unit system d=1, the wire length is L=100, and
the phonon frequency w is in terms of the value of the first
mode, i.e., w1=ct� /d=�. We also scale temperature by TD,
where TD	�w1 /kB. For a thin wire of a width d=10−6 cm
and for an acoustic transverse phonon speed �silicon�
ct=5.84105 cm /sec, we have TD=14 K. In a reaction matrix
formulation of wave scattering, solutions in Eqs. �10� and
�11� can be taken as “free” solutions in the left and right
leads that are connected by the wire. To find the relation
between the wave amplitudes An, Bn, Cn, and Dn, these two
solutions will be matched with that in the wire. Hence, we
need to solve the elastic wave equation in Eq. �8�, confined
by two boundaries defined by y=1+ �̃�x� �or y=1+��x� for
an almost white-noise type surface disorder� and y=0 �see
Fig. 1�b��. To that end a set of eigenfunctions of Eq. �8�
satisfying the zero-stress boundary condition are needed. In
addition, as one main feature of the reaction matrix
formulation,11,22 the derivative of the eigenfunctions with re-
spect to the scattering coordinate x should be zero at the
lead-wire interface, i.e., at x=0 and x=L.

To find the eigenfunctions in the scattering region, we
employ a coordinate-transformation technique. That is, we
consider two coordinates x�=x and y�=y / �1+ �̃�x��, where
�̃�x� is the surface function of the wire. In the x�−y� coor-
dinate system, the elastic wave equation becomes compli-
cated. However, it is now considered over a straight channel
�see Refs. 11 and 22 for details of this coordinate-
transformation technique�. In the coordinate system an
eigenstate �n satisfying the necessary boundary condition
can be written as

�i�x�,y�� = �
m,m�

�m,m�
i 2

�L�1 + �̃�x���
cos�m�x�

L
�cos�m��y�� ,

�12�

where m, m� are integers, the summation over m and m�
must be truncated for practical purposes, and �mm�

i are the
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expansion coefficients to be found numerically.
Once the eigenstates �i�x� ,y�� with eigenfrequencies w̃i

are obtained, we impose the continuity condition at x=0 and
x=L, yielding a reaction matrix,

Rnm = �
i=1

M
�n

i �0��m
i �l�

w − w̃i

, �13�

where M is the size of the involved basis sets �exact for
M =��, and �n

i =0
1�i cos�n�y� is the overlap of ith eigen-

state with the nth “channel” solution cos�n�y�. The index n,
m of the reaction matrix Rnm denote the scattering channels
associated with real wavevectors kn and km. The reaction
matrix Rnm can then yield the scattering matrix,

S =
I − iKR

I + iKR
, �14�

where I is a unit matrix of the same size with R, and K is a
diagonal matrix with diagonal elements related to the
wavevectors kn.22,24 The scattering matrix then relates the
incoming wave with the outgoing wave via

�Bn

Cn
� = S�An

Dn
� . �15�

Finally, the total scattering throughput is defined as
G	��G�=�n,m�Sn,m�2, where the summation is over all open
modes. G essentially describes the total transmission of a
scattering wave up to a certain given phonon frequency,
without taking into account the actual thermal distribution of
these phonon modes.

B. Throughput and heat conductance results

At low temperatures, very few acoustic modes can be
populated. Hence it is of interest to examine the scattering
throughput in the one-mode regime. This is shown in Fig. 2.
Specifically, Fig. 2�a� depicts the results associated with two
realizations of a wire with almost white-noise surface disor-
der. It is seen that when the phonon frequency is small, the
throughput G is fluctuating drastically, with its average value
far from unity. This indicates that in these two cases the
localization length of the elastic wave is comparable to the

system size. As the phonon frequency increases, G is seen to
be close to unity, suggesting that the localization length is
now well beyond the wire length. Figure 2�b� shows what
happens if we impose a correlation on the surface disorder,
but with the noise variance fixed at �=0.08. In particular, the
dotted curve �curve 2�, the dashed curve �curve 3�, and the
solid curve �curve 1� are for “engineered” surface
functions generated from a convolution of a random surface
function ��x� with �sin�0.7�x�−sin�0.4�x�� / �0.7�x�,
�sin�0.7�x�−sin�0.5�x�� / �0.7�x�, and �sin�0.6�x�
−sin�0.5�x�� / �0.6�x�, respectively. It is seen that G devel-
ops a clear window for certain phonon frequencies. Despite
statistical fluctuations, these throughput windows also show
differences in their widths, namely, curve 2 shows the widest
window and curve 1 shows the narrowest window. This is
consistent with the differences in the bump widths of their
associated surface structure factor. We also examined other
realizations of random surfaces with the same surface struc-
ture factor, confirming that the location of the throughput
windows shown in Fig. 2 does not change much. We have
also checked that the location of the throughput window
quantitatively matches the profile of ��2k�, the surface struc-
ture factor evaluated at twice of the wavevector.

In Fig. 3 we examine how different properties of the wire
disorder might affect the heat conductance � calculated from
Eq. �3�. To make a better connection with the results in Fig.
2 we examine a temperature regime where thermal excitation
only populates at most two channels. First of all, for the case
without disorder �upper thin solid curve�, the plotted quantity
� /T is seen to be roughly a constant for low temperatures.
This is somewhat expected because a perfect thin wire is
known to show a linear temperature dependence in � at low
temperatures. Certainly, as the temperature increases, devia-
tions from the linear behavior emerge due to an increasing
contribution from the second populated channel. By contrast,
in the presence of surface disorder, the linear temperature
dependence of � might not hold from the very beginning of
the temperature range shown in Fig. 3 �curves 2, 3, and 4�.
Interestingly, for different surface disorder, � /T shows quite
different behavior. The almost white-noise case �curve 4� de-
viates most from the case without disorder, with the maximal
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(b)

4

1

23

FIG. 2. Acoustic phonon transmission in the one-mode regime,
as reflected in the dimensionless throughput G. �a� Results for two
realizations of a waveguide with almost white-noise surface disor-
der. �b� Results for three different cases of colored surface disorder,
with the associated structure factor set as a square bump function
with three different bump widths. See the text for details.
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FIG. 3. The ratio between heat conductance � and temperature,
as a function of temperature, for wire geometries considered in Fig.
2. Thin solid line is for a wire without surface disorder. Line �4� is
for a wire with almost white-noise surface disorder. Other lines are
for wires with their surface function generated from a convolution
of white noise with some smooth function explicitly given in the
text. Here and in all other figures below, the plotted quantity is
always dimensionless and �0	kBw1.
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deviation around a factor of two. These observations suggest
that one might achieve some subtle control over the tempera-
ture dependence of � in the low-temperature regime by ma-
nipulating surface correlations, or say something about the
surface correlation by measuring � at different temperatures.

To shed more light on how the throughput windows ob-
served in Fig. 2�b� affect the temperature dependence of �,
let us now consider a model throughput curve that allows for
analytical calculations. Consider first two step functions
fa�w� and fb�w�, namely, fa�w�=0 for w�a and fa�w�=1 for
w
a; and fb�w�=0 for w�b and fb�w�=1 for w
b. We
denote the heat conductance as ��a� for G�w�= fa�w� and
��b� for G�w�= fb�w�, respectively. Assuming that there is
only one open mode, we obtain from Eq. �3� that

��a� = kBw1� a2ea/T

T�ea/T − 1�
− 2 log�ea/T − 1�a +

2�2T

3

− 2TR�Li2�ea/T��� �16�

and an analogous expression for ��b�, where Li2 is the so-
called dilog function. Interestingly, at this point we found
that the widely cited Ref. 1 does not contain the second term
in Eq. �16� and misses a factor of two in the third term. To
ensure that our expression is indeed correct we show in Fig.
4�a� that direct numerical integration results based on Eq. �3�
are identical with the analytical result of Eq. �16� for
a=0.2. For the sake of comparison we also show in Fig. 4�b�
the associated analytical result of Ref. 1 �dashed line�, as
compared with the same solid line in Fig. 4�a�. Note also that
because the function Li2�z� for certain values of z can be
explicitly evaluated, it is now possible to predict the exact
value of ��a� for certain ea/T.

Let us now examine the heat conductance behavior if
G��� is a square-well function Gsw�w�, i.e., it is zero for
a�w�b and is unity elsewhere. Because Gsw�w�
= fb�w�+1− fa�w�, one obtains from Eq. �16�

� =
kBw1�2T

3
+ ��b� − ��a� , �17�

where T is already scaled by TD. Approximately, for b
a
�T, we have

� =
kBw1�2T

3
+ kBw1� T2�b − a�

�T − a��T − b��; �18�

and for a�b�T we have

� =
kBw1�2T

3

+ kBw1�a − b + 2a log�a� − 2b log�b� +
b3 − a3

36T2 � .

�19�

These two limiting results show that in either case �Eqs. �18�
and �19��, a window in the throughput curve can cause � /T
to decrease as compared with what is expected from a linear
temperature dependence of �.

From Eq. �17� it is also possible to examine how the
width �b−a� of the square-well function Gsw�w� as a
throughput curve affects � /T. To that end we show in Fig. 5
a logarithmic plot of � /T versus T /TD. The arrow therein
indicates an increasing �b−a� in steps of 0.08, which ranges
from 0.0 to 0.4. Interestingly, as the throughput window in-
creases its size, � /T decreases. The � /T function is also seen
to deviate from a constant function more and more and a
better description of the temperature dependence of � seems
to be a power function. We note that this observation is con-
sistent with experimental observations in superconductive
materials.4 Note also that the analytical result here also ex-
plains the general trend seen in our numerical results in Fig.
3. That is, the lowering of � /T curves in Fig. 3 is associated
with the widening of the throughput windows shown in Fig.
2�b�.

So far we have studied the low-temperature regime where
one or two modes are significantly populated. What happens
if more phonon modes are populated? To answer this ques-
tion we show in Fig. 6 the throughput G�w� for up to five
modes, for a wire without disorder �case �a��, with almost
white-noise surface disorder �case �b��, and with colored sur-
face disorder �cases �c� and �d��. A number of observations
are in order. First, G�w� can be nonzero for phonon frequen-
cies much smaller than w1, a feature different from that in
electron transport. In the latter case one can only excite the
first mode after going beyond the associated cut-off energy.
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FIG. 4. �a� Heat conductance from direct numerical integration
�dotted� of Eq. �3� versus the analytical result �solid line� of Eq.
�16�, for a=0.2. As indicated by the inset, the dotted line is on top
of the solid line. �b� Same as in �a� but the dashed line is calculated
from an expression in Ref. 1. Note the different scales between
panel �a� and panel �b�.
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FIG. 5. Temperature dependence of � /T for throughput curves
modeled by square-well functions. The arrow indicates an increas-
ing width of the square-well function, in steps of 0.08, ranging from
0.0 to 0.4. Note that quantities here are plotted in the logarithmic
scale.
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This difference arises from the fact that the Schrödinger
equation for electrons and the elastic wave equation for
phonons have different boundary conditions. Second, in the
presence of surface disorder, the threshold frequency for
opening a channel and hence a drastic increase in G�w� gets
higher as compared with the noiseless case. This is analo-
gous to the electron case,22 which can be roughly explained
via a decrease in the effective wire width. Third, for cases �c�
and �d�, the dip in G�w� is clear only for the one-mode and
two-mode regimes. For higher modes, the throughput dip is
no longer clear and is buried by fluctuations in G�w�.

Can those throughput curves in Fig. 6 manifest them-
selves differently in the heat conductance behavior, when the
temperature is high enough to populate many phonon
modes? The answer is positive based on the results shown in
Fig. 7. In particular, Fig. 7 depicts the temperature depen-
dence of � for those cases shown in Fig. 6. It is seen that
these cases still show quite different behavior even when five
phonon modes are significantly populated. Cases �c� and �d�
associated with colored surface disorder lie between the
curve for a perfect wire and that for a wire with almost
white-noise surface disorder. Results in Fig. 7 indicate that
for temperatures of the order of �10 K, different surface
disorder properties of a thin wire of a width �10 nm may
still cause a considerable difference in heat conductance. The
results are also plotted on a log-log scale in the inset of Fig.
7. However, we do not see any evident power-law depen-
dence of � versus T. This is somewhat expected because the
T dependence of � is quite complicated �see, for example,
Eq. �17��. For the sake of comparison, a perfect wire with
twice the width is also shown in Fig. 7 as case �e�. In that
case the temperature dependence is much stronger. This is
anticipated because of the T3 scaling of � in bulk materials.

IV. CONCLUDING REMARKS

In this work we adopted an elastic wave picture of heat
transport at sufficiently low temperatures. We presented, for
the first time, a reaction matrix treatment of the scattering of
elastic waves in thin wires with surface disorder, with real-
istic zero-stress boundary conditions implemented. We have
shown that correlations in the surface disorder can lead to
structures in the frequency dependence of throughput and
can hence affect considerably the temperature dependence of
heat conductance. Though not done in this study, the heat
conductance for a thin wire with an experiment-related sur-
face correlation function can be examined in a straightfor-
ward manner. Because our treatment is a natural extension of
early electron transport studies, insights gained from studies
of electron waveguide transport can now be much relevant to
understanding heat transport in thin wires.

Because the boundary condition for in-plane modes of
elastic waves is much more difficult to handle for a thin wire
of arbitrary shape, here we restrict ourselves to out-of-plane
modes only. However, preliminary results show that in-plane
modes have similar qualitative behavior as out-of-plane
modes.

Note added in proof. Recently, we became aware of two
other related studies of thermal transport in the presence of
disorder.25,26
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